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Chiral front propagation in liquid-crystalline materials: Formation of the planar monodomain
twisted plywood architecture of biological fibrous composites

Gino De Luca and Alejandro D. Rey*
Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 2B2

~Received 6 November 2002; published 30 January 2004!

Biological fibrous composites commonly exhibit an architecture known as twisted plywood, which is similar
to that of the cholesteric liquid-crystalline mesophases. The explanation for the structural similarity is that
biological fibrous composites adopt a lyotropic cholesteric liquid-crystalline phase during their formation
process. In this work, a mathematical model based on the Landau–de Gennes theory of liquid crystals has been
developed to reproduce the process by which long chiral fibrous molecules form the twisted plywood structures
observed in biological composites. The dynamics of the process was then further investigated by analytically
solving a simplified version of the governing equations. Results obtained from the model are in good qualita-
tive agreement with the theory of Neville@Biology of Fibrous Composites~Cambridge University Press,
Cambridge, England, 1993!# who hypothesized the necessity of a constraining layer to lock the direction of the
helical axis of the plywood in order to create a monodomain structure. Computational results indicate that the
plywood architecture is obtained by a chiral front propagation process with a fully relaxed wake. The effects
of chirality and concentration on the formation process kinetics are characterized.

DOI: 10.1103/PhysRevE.69.011706 PACS number~s!: 61.30.2v, 83.80.Xz, 61.30.Dk, 61.30.St
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I. INTRODUCTION

Skeletal and protective extracellular tissues of biologi
systems are highly organized composite materials@1–7#.
They exhibit remarkable mechanical properties but are b
from relatively simple constituents such as cellulose, chi
and collagen@1,7#. In addition, these composite materials a
biodegradable and assembled at ambient temperature
pressure in an aqueous environment. Biological compos
have therefore undeniable advantages over synthetic ma
als and are of a growing interest in applied material scien
A major challenge in the field is to produce synthetic equi
lents of these composite materials. However, to develo
synthetic route, the structural formation process of biologi
composites needs to be precisely described and unders
@6#.

Strategies developed by material engineers to solve
chanical problems are often similar to the ones employed
living organisms and even the lower ones@8#. Natural com-
posites exhibit laminated architectures called plywoods@1#.
The laminated architecture, the most widely found in natu
is the twisted plywood, also referred as helicoidal plywo
@1–7#. The plywood architecture, found in nearly all regul
extracellular assemblies of living systems, is well doc
mented in the literature@1–7#.

But how are fibrous macromolecules precisely mani
lated into the extracellular matrix so as to form the twist
plywood assemblies found in biological composites? T
most probable answer is that the extracellular matrix, wh
surrounds the fibrous water-insoluble molecules, pas
through a mobile phase during its development and s
assembly@1–7#. In thermodynamic terms, self-assembly is
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free energy minimization process driven by entropy. The f
energy of the system is lowered as the excluded volume
tween the molecules is reduced@8#. Because most naturally
occurring biological polymers are chiral—i.e., they are n
superimposable on their mirror image—the excluded volu
is favorably reduced by twisted/helical packing.

Knowing that natural composites are usually compact
partially ordered, and required to pass via a more or less fl
state, it is likely that a lyotropic liquid-crystalline phase
involved during their supramolecular self-assembly. Lyot
pic liquid-crystalline phases form three-dimensional asse
blies, which combine the fluidity of liquids with the long
range orientational order of crystals, above a certain crit
concentration of molecules in the solution@9#. Among the
different types of liquid-crystalline phases found in natu
cholesteric mesophases demonstrate the greatest stru
similarities with the architecture of biological composite
Cholesteric mesophases are three-dimensional assem
whose molecules lie on a series of equidistant pseudopla
that are slightly rotated with respect to one another@9#.
These mesophases, which are made up of optically ac
molecules, are characterized by a length scale known as
pitch, p0 , corresponding to the distance required by the m
ecules to accomplish a 2p radians rotation of their long axis
Figure 1 shows a schematic of the plywood architect
adopted by biological composites~adapted from@3#!. The
fiberlike constituents display the classical cholesteric or c
ral nematic spatial organization defined, in a rectangu
(x,y,z) coordinate system, by

nx5cosu~y!, ny50, nz52sinu~y!, ~1a!

with

u~y!5
2p

p0
y, N5 j , ~1b!
©2004 The American Physical Society06-1
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wheren is the unit vector~director! of the fibers,u is the
angle between the director and thex axis, p0 is the pitch,N
is the unit helix vector, andj is the unit vector in they
direction. Figure 1~b! presents a schematic of the direct
field along a plane containingN and shows that the fiber
rotate continuously along thez direction. Figure 1~c! shows
that an oblique cut of the plywood architecture displa
arced patterns. The arced patterns are common in biolog
composites and have been thoroughly characterized by N
ille @1#. It is well known that such arced patterns are likely
arise from a cholestericlike organization@1–7#.

Despite their similar architectures, cholesteric liqu
crystalline phases and biological fibrous composites pre
an essential difference. While liquid-crystalline materials e
ist as a distinct state of matter which is intermediate betw
a liquid and a solid state, mature biological fibrous comp
ites are in a solid state. The liquid-crystalline charac
which is hypothesized to exist during the first steps of
polymer secretion by the cells, is transformed in a solid s
by molecular cross-links. However, the imprint of the ch
lesteric liquid-crystalline phase in the mineralized materi
is testified to by the properties of the twisted plywood arc
tecture in electron and polarized-light microscopy@1–5#.
Liquid-crystalline theories developed in condensed-ma
physics are consequently helpful to advance structural de
opment knowledge for biological fibrous composites.

The mechanical reliability of biological composites r
sides in their highly hierarchical structure~e.g., molecules,
macromolecules, microfibrils, fibrils, fibers, etc.!, but also in
their twisted plywood architecture@1,4,6,7#. One essentia
feature of these structures is that they are monodomains@1#.
The quasiabsence of defects found in most composite
believed@1# to be due to the presence of a constraining la
that fixes the rotation axis~N! of the plywood architecture
along the surface unit normal~j !. Thus knowledge of the
conditions under which monodomain defect-free structu
are generated is essential to the understanding of biolog
composites.

FIG. 1. Schematic representation of the twisted plywood arc
tecture.~a! Parallel and equidistant layers. On each layer, para
lines indicate the orientation of the fibers. The fibrillar directi
rotates by a small constant angle from one layer to the next.~b!
Transverse section plane; the fibers appear as dots or segme
different length, all parallel to each other.~c! Oblique section plane
the fibers appear as superposed series of nested arcs. The perio
seen in these various planes corresponds to a 180° rotation o
fibers. Adapted from@3#.
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Based on these considerations, the specific objective
this paper are~i! to simulate the ordering process leading
the twisted plywood architecture found in cholesteric liqu
crystalline phases and biological fibrous composites,~ii ! to
identify the conditions under which the stable defect-fr
monodomain helicoidal plywood architecture is obtaine
and~iii ! to characterize the kinetics of the formation proce
of a monodomain cholesteric liquid crystal and thus pred
those of a twisted biological fibrous composite.

This paper is organized as follows. Section II briefly pr
sents the invoked theoretical framework on liquid-crystalli
mesophases and the derivation of the governing equation
the model describing the formation of the twisted plywo
architecture. Section III is devoted to the computation
methods used to solve the model. Section IV presents
computational and analytical results on the plywood arc
tecture formation process. Section V presents the con
sions.

II. THEORY AND GOVERNING EQUATIONS

A. Description of the long-range orientational order

As mentioned above, the structure of liquid-crystalli
mesophases is characterized by a long-range orientationa
der of their constituent molecules. This long-range orien
tional order is commonly described by a second-order sy
metric traceless tensorQ corresponding to the secon
moment of the orientation distribution function. This macr
scopic quantity, usually referred as the tensor order par
eter, reads@9#

Q5SS nn2
d

3D1
1

3
P~mm2 l"l!, ~2a!

where the following restrictions apply:

Q5QT, ~2b!

tr~Q!50, ~2c!

2
1

2
<S<1, ~2d!

2
3

2
<P<

3

2
, ~2e!

n"n5m"m5 ll51, ~2f!

nn1mm1 ll5d. ~2g!

The unit vectorsn, m, andl presented in Eqs.~2a!, ~2f!, and
~2g! form an orthogonal director triad which characteriz
the orientation of the phase. The unit vectorn is known as
the uniaxial director, andm and l as biaxial directors. The
quantitiesS and P, which are, respectively, known as th
uniaxial and biaxial scalar order parameters, are measure
the molecular alignment. The uniaxial scalar order param
gives the degree of alignment along the uniaxial directorn,
while the biaxial scalar order parameter gives the degre

i-
l
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CHIRAL FRONT PROPAGATION IN LIQUID- . . . PHYSICAL REVIEW E 69, 011706 ~2004!
alignment along the first biaxial directorm. The scalar order
parameters and the tensor order parameterQ ~main frame!
are given by

S5
3

2
~n"Q"n!, ~3a!

P5
3

2
~m"Q"m2 l"Q"l!, ~3b!

Q5F 2
1

3
~S2P! 0 0

0 2
1

3
~S1P! 0

0 0
2

3
S

G . ~3c!

The tensor order parameterQ characterizes thoroughly th
microstructure of the phase by combining information ab
orientation and alignment. Its quadrupolar symmetry reta
the usual head-tail invariance that implies equivalence
tween the director fieldn(r ) and 2n(r ). According to Eq.
~3! the correspondences between phase and alignmen
isotropic (S50,P50), uniaxial (SÞ0,P50), and biaxial
(SÞ0,PÞ0).

B. Landau–de Gennes theory of liquid-crystalline materials

The Landau–de Gennes theory expresses the free en
density of the liquid-crystalline material as a power ser
expansion of scalar invariants of the tensor order param
Q and its gradients¹Q @9# representing short- and long
range elastic effects, respectively. In the absence of exte
fields, the total free energy density of the mesophase ca
given in the following dimensionless form@9,10#:

f 5 f is1 f sr1 f lr , ~4a!

f sr5
1

2 S 12
U

3 D tr~Q2!2
U

3
tr~Q3!1

U

4
@ tr~Q2!#2, ~4b!

f lr5
1

2 H F S j

h0
D ~¹3Q!14pS j

p0
DQG2

1yF S j

h0
D ~¹•Q!G2J ,

~4c!

where f is is the free energy density of the isotropic sta
which depends on conventional thermodynamic parame
such as temperature, pressure, and concentration.f sr and f lr
are, respectively, the short- and long-range contribution
the total free energy densityf . The dimensionless paramet
U is a thermodynamic potential proportional to the dime
sionless concentration of rodlike molecules in the mate
which drives the isotropic-cholesteric phase transition. T
thermodynamic potentialU is related to the concentrationC
by the relationU53C/C* , whereC* is the concentration a
the phase transition. The parameterj is a coherence/interna
length that gives the distance over which variations of lo
01170
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range orientational order can occur. This length furnishes
order of magnitude for the size of a defect. The parameteh0
is an external/geometric length that gives the thickness of
material. The parameterp0 is the pitch of the cholesteric
liquid-crystalline material. It is essential to recognize th
this model is therefore of a mesoscopic nature since it
cludes a molecular~j! length scale and a macroscopic (h0)
length scale. The remaining parametery represents a mea
sure of the elastic anisotropy of the material. This parame
is constrained to be greater than21/2 in order to ensure the
positivity and thermodynamic stability of the long-rang
contribution to the free energy.

The time evolution of the tensor order parameterQ is
given by a standard dimensionless gradient flow equa
@11,12#:

2g~Q!
]Q

]t
5

d f

dQ
5F ] f

]Q
2¹•

] f

]¹QG [s]

, ~5a!

g~Q!5S 12
3

2
tr~Q2! D 2

, ~5b!

where the superscript@s# denotes symmetric and tracele
tensors, and whereg~Q! is a rotational viscosity. Substituting
Eqs. ~5a! and ~5b! into Eqs.~4a!, ~4b!, and ~4c! yields the
dimensionless governing equationQ5Q(r ,t) for the time
evolution of the tensor order parameter:

2g~Q!
]Q

]t
5SR1LR, ~6a!

SR5S 12
U

3 DQ2U~Q"Q! [s]1U~Q:Q!Q, ~6b!

LR52S j

h0
D 2

$¹2Q2@¹•~¹Q!T# [s]1y@¹•~¹•Q!# [s]%

1S j

h0
D S j

p0
D @28p~¹3Q!# [s]1S j

p0
D 2

@216p2Q#.

~6c!

The tensors SR and LR represent the short- and long-ra
contributions to the dynamics ofQ. The coupling paramete
j/h0 controls the balance between short- and long-range
fects while j/p0 controls the balance between chiral a
achiral effects. In the limitj/p0→0, the material describe
an achiral ordinary nematic liquid-crystalline material.

III. COMPUTATIONAL MODELING

In order to understand the process which leads to the
nar monodomain twisted plywood architecture observed
the broad majority of biological fibrous composites, w
simulate the time evolution of the tensor order parameteQ
in a lyotropic cholesteric liquid-crystalline material. Sinc
the tensor order parameter has five independent compon
~symmetric and traceless!, five coupled time-dependent non
linear partial differential equations need to be solve simu
neously. The computational domain is the unit square
<x<1,0<y<1), and henceQ5Q(x,y,t). We emphasize
6-3
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G. De LUCA AND A. D. REY PHYSICAL REVIEW E69, 011706 ~2004!
that, despite the fact that the simulation domain is two
mensional~2D!, Q conserves its five degrees of freedom.

A. Boundary conditions

In order to restrict the influence of physical boundaries
the material bulk, periodic boundary conditions are e
ployed on thex direction. The boundary conditions adopte
on the remaining bounding surfaces are of the Dirichlet ty
The upper boundary of the computational domain (y51)
describes an isotropic state in order to represent the sur
of a secreting cell, as described in@1#, andQ is defined by
Eq. ~2a!. The lower boundary (y50) corresponds to a crys
tallized ordered layer. Along this boundary, the molecu
describe a strong planar anchoring and accordingly the di
tor triad is given by

n~y50!5~1 0 0!, ~7a!

m~y50!5~0 1 0!, ~7b!

l~y50!5~0 0 1!. ~7c!

The alignment of the molecules along these particular dir
tions is given by the equilibrium scalar order parameterSeq
and Peq. These values are determined by the steady-s
solutions of the following autonomous nonlinear system
coupled differential equations:

]S

]t
5

3

2 S n•
]Q

]t
•nD

5S 2
2

9
P2S2

1

9
P21

1

3
S22

2

3
S31

1

3
SD

3U2S24p2S j

p0
D 2

~S2P!, ~8a!

]P

]t
5

3

2 S m•

]Q

]t
•m2 l•

]Q

]t
• lD

5S 2
2

3
S2P2

2

3
PS2

2

9
P31

1

3
PD

3U2P112p2S j

p0
D 2

~S2P!. ~8b!

Note that we have]n/]t5]m/]t5] l/]t50.

B. Initial conditions

Initially, the liquid-crystalline material is taken to be in
stable isotropic state. This disordered state corresponds t
physical situation of a low concentration of chiral fibro
molecules in the surrounding extracellular matrix of the b
logical composite. The initial tensor order parameter fi
Q05Q(t50) characterizing the initial microstructure of th
material is defined in the following way:

Q05S0S e1e12
d

3D1
1

3
P0~e2e22e3e3!, ~9!
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whereS0 and P0 are random numbers between21310210

and 1310210 representing thermal fluctuations in the degr
of order. The random orthogonal unit vectorse1 , e2 , ande3

describe the initial isotropic orientation of the molecules
the material.

C. Numerical methods

The governing equations are solved using the class
numerical method of lines which consists of transforming
set of governing partial differential equations into a set
ordinary differential equations by spatial discretization a
subsequently integrating with respect to time. Since the
ometry of the computational domain is trivial, we us
second-order finite difference approximations for the spa
derivatives. The mesh refinement technique was perform
to confirm the invariance of the results with respect to
grid spacing. Time integration was performed with a Rung
Kutta-Chebyshev algorithm. This explicit method, with a
extended domain of stability, possesses an adaptive ti
stepping scheme that captures the physics contained
abrupt changes of the tensor order parameter@13#.

IV. RESULTS AND DISCUSSIONS

A. Phase-plane analysis of cholesteric order

Ordinary nematic liquid-crystalline materials are chara
terized by their uniaxiality, whose amplitude and intens
are directly related to the value of the thermodynam
potential—i.e., temperature or concentration. In the case
cholesteric mesophases~chiral nematics!, the situation is
somewhat more complicated since the symmetry of
structure is a function of the helical pitch. The importance
this length scale on the symmetry of the mesophase is
tured by a phase-plane analysis of the system of equat
~8a! and ~8b!.

Figure 2 exhibits all possible orientation states in the s
lar order parameterS-P triangle for a given parametric
choice. The states described are as follows@14#: ~a! isotro-
pic state~the three eigenvalues ofQ are identical!: S50 and
P50; ~b! uniaxial state~two eigenvalues ofQ are identical!:
~i! line P50, ~ii ! line P53S, and~iii ! line P523S; and~c!
biaxial state~the three eigenvalues ofQ are distinct!: SÞ0
andPÞ0, interior of the order parameter triangle excludin
the three uniaxial lines.

In addition to this atlas of ordering states, Fig. 2 gives
seven stationary points corresponding to the steady-state
lutions for the autonomous system given by Eqs.~8a! and
~8b! for U56 andj/p050.03 ~the pitchp0 is 33.33 times
longer than the coherence length!. The dashed lines indicate
nullclines. The three nodal sinks~SI! give the value of the
equilibrium scalar order parametersS andP. In simulations,
the system always picks up the attractor located on thS
.0 part of the plane, since uniaxiality prevails over biaxia
ity in this system. The nodal source~SO! corresponds to the
unstable isotropic source. The remaining saddle points~SA!
are unstable solutions corresponding to defects that the
tem might encounter in the presence of orientational inco
patibilities @15#. The chirality (j/p0) forces the system to
6-4
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slightly deviate from the uniaxial symmetry, characteristic
ordinary achiral nematics.

The asymptotic behavior of the numerical solutions
Eqs. ~8! can be used to establish the role of biaxiality
cholesteric phases and therefore, by analogy, in biolog
plywoods. Figure 3 shows seven computed trajectories of
cholesteric sink node, asj/p0 increases from 0.01 to 1. Eac
of the seven trajectories corresponds to a given value oU
~see legend to Fig. 3!. As U increases, the trajectories sh
upwards in theS-P triangle. The start of each trajectory
the nearly uniaxial state (P'0) and the end is the maximall
biaxial line (P5S). WhenU53 ~the limit of metastability
of the ordinary nematic!, the increase ofj/p0 brings the
stable state to the isotropic node. In other words,j/p0 modi-
fies the metastability limit of the cholesteric phase. T
uniaxial line P50, corresponds to the solutions that min
mize the short-range energy while the solutions on
~maximally! biaxial line P5S minimize the long-range con
tribution. For a certain value of the ratioj/p0 , the balance
between short- and long-range effects shifts and the m
stable conformation for the system becomes the so-ca
blue phase in which helicity is not restrained to lie on o
plane@10#. This complicated structure is not accessed in
study since the physical values ofj/p0 are expected to be
such that the solution nodes tend towards theP50 line,
where the stable phase is found to be cholesteric with a n

FIG. 2. Atlas of the orientation states in the scalar order par
eterS-P triangle and steady-state solutions to the autonomous
tem given by Eq.~10!. The orientation states are isotropic-sta
node (S50,P50); uniaxial-state~i! line P50, ~ii ! line P53S, and
~iii ! line P523S; biaxial state in the interior of the triangle ex
cluding the three above mentioned uniaxial lines. The black d
represent the seven stationary points characterizing the symme
the cholesteric mesophase forU56 and j/p050.03. The three
nodal sinks~SI! give the value of the equilibrium scalar order p
rametersS and P. The nodal source~SO! corresponds to the un
stable isotropic source. The saddle points~SA! are unstable solu-
tions corresponding to defects that the system might encounte
the presence of orientational incompatibilities.
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minimized gradient energy. However, the blue-phase ar
tecture has been identified in biological composites@1# and is
relevant in many other biological systems such as DNA
lutions @16#. This simple phase-plane analysis of the reduc
governing equations allows an understanding of the sym
try properties of these chiral assemblies at steady state.

B. Formation of the planar monodomain twisted
plywood architecture

This section presents representative simulation results
scribing the formation process of the planar monodom
twisted plywood architecture found in both cholesteric liqu
crystals and biological fibrous composites@1#. For direct vi-
sualization of the tensor order parameter fieldQ(x,y,t), we
draw parallelepipeds which render possible the simultane
representation of orientation and alignment informatio
These parallelepipeds are defined with the eigensystem oQ
@17,18#; the three eigenvectors~n,m,l! give the orientation of
the parallelepipeds and the corresponding three eigenva
@ln52/3S,lm521/3(S2P),l l521/3(S1P)# give the de-
gree of alignment along these orientation directions. Si
the eigenvalues ofQ span the interval@21/3,2/3#, they are
augmented by 1/3 so as to span the interval@0,1#. Therefore,
the microstructure of the material is depicted by the shif
tensorM5Q1d/3, as shown Fig. 4. Using this technique,
isotropic state is represented by a small cube. A uniaxial s
is represented by a parallelepiped with two edges of sa
length and a biaxial state by a parallelepiped with th
edges of different lengths.

-
s-

ts
of

in

FIG. 3. Computed trajectories of the cholesteric sink node,
j/p0 increases from 0.01 to 1. Each of the seven trajectories co
sponds to a given value ofU. As U increases, the trajectories shi
upwards in theS-P triangle. The start of each trajectory is th
nearly uniaxial state (P'0) and the end is the maximally biaxia
line (P5S). WhenU53 ~the limit of metastability of the ordinary
nematic!, the increase ofj/p0 brings the stable state to the isotrop
node.
6-5
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Since the effect of elastic anisotropy is out of scope in t
study, we use the one-constant approximationy51 that ren-
ders the splay, the twist, and the bend modes of deforma
@6# indistinguishable and simplifies the long-range contrib

FIG. 4. Representation of microstructure by the shifted ten
M5Q1d/3. The parallelepipeds are constructed with the eigens
tem of Q; the three eigenvectors~n,m,l! giving the orientation and
the three eigenvalues (ln ,lm ,l l) augmented by 1/3 giving the de
gree of alignment. An isotropic state is represented by a small c
A uniaxial state is represented by a parallelepiped with two edge
same length and a biaxial state by a parallelepiped with three e
of different lengths.
01170
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tion of the governing equation as follows:

LR52S j

h0
D 2

@¹2
•Q#1S j

h0
D S j

p0
D @28p~¹3Q!# [s]

1S j

p0
D 2

@216p2Q#. ~10!

Figure 5 shows a time series of the tensor fieldM (x,y,t)
describing the propagation of order in the material, forU
56, j/p050.03, andj/h050.015. ~For this representative
simulation the dimensionless pitch is therefore equal
1/2.! The computational grid has 301 nodes in thex andy
directions. When the thermodynamic potentialU ~propor-
tional to concentration of fibrous molecules in the extrac
lular matrix! increases fromU,8/3 to U56, the homog-
enous isotropic state becomes unstable and a nonl
spontaneous phase-ordering process starts. Strong grad
of order (S andP) are created between the initial constrai
ing layer aty50 and the isotropic material bulk. Recall th
at y50, (S,P) are the stable biaxial steady-state solutions
Eqs. ~10!. As a result, order and orientation are induced
the unstable isotropic bulk of the material and converted i
a stable cholesteric phase. Figure 5~a! shows a field of ran-
domly oriented cuboids representing the initial isotropic st
of the material. Figures 5~b! and 5~c! depict the time evolu-
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FIG. 5. Time evolution of the
microstructure.~a! Field of ran-
domly oriented cuboids represen
ing the initial isotropic state of the
material. ~b!,~c! Order progresses
as a moving front from the stable
initial constraining layer and
leaves behind a fully relaxed heli
cal microstructure. ~d! Steady-
state microstructure of the mate
rial corresponding to the plana
monodomain cholesteric structur
analogous to the twisted plywoo
architecture. The absence of topo
logical defects is due to the fac
that there is unique helical direc
tion for the whole material. The
specific times are 0~a!, 10 ~b!, 20
~c!, 30 ~d!. Boxes are of unit
length.
6-6



in
es
ed

n

th
ie

g
s
ic
re
a
w
by
n

ifi

th
e
en
o

ic
s
-
-
y

t
d

ex
on
m
te

th
th

la

ty
le
h
te
n

.
pr
si
de
o
o
y
e

e
s

r-
ed

ch.
pa-

so,
lity
all
ed

t
d

g-
ply-
this

uid

y

ce
s,
c-

s,
e-

em

s.
al

ons
of
a

-
o-

nd
g to

e

ve

CHIRAL FRONT PROPAGATION IN LIQUID- . . . PHYSICAL REVIEW E 69, 011706 ~2004!
tion of the microstructure. Order progresses as a mov
front from the stable initial constraining layer and leav
behind it a fully relaxed helical microstructure. The order
material exhibits a single helical direction~N! that is perpen-
dicular to the moving front~and the surface of structure i
formation!. The material remains homogeneous in thex di-
rection perpendicular to the front. Once established,
defect-free cholesteric order is stable and no further reor
tation mechanisms occur in its wake. Figure 5~d! gives the
steady-state microstructure of the material correspondin
the planar monodomain cholesteric structure analogou
the twisted plywood architecture. The absence of topolog
defects is due to the fact that there is a unique helical di
tion ~N! for the whole material and therefore no orientation
incompatibilities between neighboring regions exist. Kno
ing that the microstructure of the bulk is greatly affected
the limiting surfaces and therefore this ‘‘ideal’’ arrangeme
of the molecules within the material is due to the spec
anchoring of the molecules on the physical boundaries.

Periodic boundary conditions have been employed on
x direction in order to remove surface effects from the sid
The upper boundary of the computational domain repres
the surface of the secreting cell along which the fibrous m
ecules are isotropically ordered. Hence, the only phys
boundary that can act on the material bulk is the previou
solidified ordered layer~lower boundary of the computa
tional domain!. Along this initial constraining layer, the mol
ecules describe a smooth~the director orientation is perfectl
regular! planar~molecules parallel to the surface! state, the
system naturally adopts its helical direction~N! perpendicu-
larly to the restraining surface. It is understood here tha
the domain were to be expanded—i.e., as would be expan
in a biological system—this boundary would be ordered
actly like its predecessor and serve as the new initial c
straining layer in the expansion cycle of the biological co
posite. Therefore, by analogy, the monodomain twis
architecture of biological fibrous composites is assumed
arise through an ordering process qualitatively similar to
one described above, in which a planar anchoring of
chiral molecules at the surface is indispensable.

Figure 6 shows the time evolution of the uniaxial sca
order parameterS ~degree of alignment! and the out-of-plane
componentunzu of the director field using gray scale intensi
plots, for the same parametric values and dimension
times used in the simulations results shown in Fig. 5. T
fields go from white to black as the scalar order parame
goes from its equilibrium value to zero, and the out-of-pla
componentunzu goes from 0 to61. From Fig. 6, it is clear
that both order (S) and orientationunzu propagate as fronts
Both fronts have the same speed, but the director front
cedes the scalar order front parameter. This is not surpri
as an increase in alignment—i.e., the scalar or
parameter—requires a well-established average director
entation. In other words, the distance that separates the fr
of the two processes corresponds to a preoriented la
Therefore the phase-ordering process consists first of the
tablishment of orientation and then an increase of alignm
along the direction adopted by the system. The thicknes
the preorientation layer corresponds~roughly! to the half-
01170
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cholesteric pitch. In addition to the lag, Figs. 6~b!, 6~d!, and
6~f! illustrate the periodic extinction of light that characte
izes the twisted plywood architecture observed in polariz
light microscopy and that arises every half-cholesteric pit

Figure 7 shows the time evolution of the scalar order
rametersS and P along the helix direction~N!. The picture
shows that the initial shape of the front is conserved. Al
the speed of the front is constant and the degree of biaxia
is very low compared to the degree of uniaxiality. The sm
overshoot in the biaxial order parameter profiles is explain
by the nonlinearity of the front. SinceP is coupled toS and
its gradient, the highest value ofP appears at the highes
value in the gradient ofS. This is easily seen by the arce
trajectory made by the front in theS-P triangle ~Fig. 8!.

C. Kinetics of the phase-ordering process

In this section, we focus on the kinetics of the orderin
process that leads to the planar monodomain twisted
wood. The objective is to get a sense of the speed of
process with respect to the thermodynamic potentialU and
the length scale ratiosj/p0 andj/h0 ~material properties!.

In order to do this, we assume that the cholesteric liq
crystal is uniaxial~this is justified by the strong uniaxiality
that prevails over biaxiality in the cholesteric geometr!.
Also, we assume that the directorn is fixed in time and that
it describes an ideal helix along the normal to the interfa
~this is justified by the observation that, in the simulation
the kinetics of the moving front are unaffected by the dire
tor triad orientation!. Given these simplifying assumption
the original problem reduces to a one-dimensional tim
dependent Ginzburg-Landau~TDGL! type of equation@19–
21#.

The TDGL equation associated with the present probl
reads

]S

]t
2S j

h0
D 2 ]2S

]y2 52
] f

]S
5F211

1

3
U24p2S j

p0
D 2GS

1
1

3
US22

2

3
US3. ~11!

Equation~11! accepts two types of topological solution
The first type of solutions interpolating between a loc
maximum and a minimum of the free energy potentialf (S)
are called relaxation modes. These traveling-wave soluti
have a multitude of possible velocities. A second type
traveling-wave solutions, interpolating between two minim
of the free energy potentialf (S), are called domain wall
solutions~or interface layers!. These solutions have a veloc
ity uniquely determined by the form of the free energy p
tential f (S) and by the boundary conditions@22#. We are
therefore interested in the latter solution, which are time- a
space-dependent traveling-wave solutions correspondin
the roots of the free energy potentialf (S). Although solu-
tions to Eq.~12! are well known for the case of an infinit
pitch p0 ~i.e., achiral nematics! @19–21#, the presence of
chirality (p0Þ0) introduces new significant effects that ha
not been established or explained.
6-7
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FIG. 6. Time evolution of the uniaxial scalar order parameterS ~left! and the out-of-plane componentunzu of the director field~right!
using gray scale intensity plots. The fields go from white to black as the scalar order parameter goes from its equilibrium value to
the out-of-plane componentunzu goes from 0 to61. The specific time are 5~a!,~b!; 12.5~c!,~d!; 25 ~e!,~f!. Alignment (S) and orientationunzu
propagate as fronts of equal speeds; however, the scalar order front parameter lags the director front, because to growS needs a well-
established average orientation. The thickness of the preorientation layer corresponds~roughly! to the half-cholesteric pitch. The periodi
extinction of light arises every half-cholesteric pitch. Boxes are of unit length.
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CHIRAL FRONT PROPAGATION IN LIQUID- . . . PHYSICAL REVIEW E 69, 011706 ~2004!
To establish phase stability of this system we follow t
standard approach of@9#. In order to determine the critica
values ofU and j/p0 for the phase transition between th
isotropic and cholesteric phases, we use the following f
energy potential:

f 5F1

2
2

1

6
U12p2S j

p0
D 2GS22

1

9
US31

1

6
US4. ~12!

Similar to achiral nematic liquid crystals@9#, there are four
characteristic stability regions, limited by three critical the
modynamic potentialU** , U IC , andU* , as follows.

~i! U,U** : the system has one global minimum corr
sponding toS50, so that the isotropic phase is stable and
ordered (SÞ0) phase is unstable. The thermodynamic pot
tial U5U** corresponds to the limit of metastability for th
cholesteric ordered phase.

~ii ! U** ,U,U IC : the free energy exhibits two minima
the global/stable minimum corresponds to the disorde
phase while the local/metastable minimum belongs to
ordered phase.U IC designates the thermodynamic potent
at which the isotropic-cholesteric phase transition occurs
this particular potential, the free energy is equivalently mi
mized by the isotropic and ordered phases and therefore
are stable. This equivalence characterizes the first-order
continuous phase transition.

~iii ! U IC,U,U* : the ordered phase becomes the glob
stable minimum of free energy while the isotropic state r
resents a local/metastable minimum. The thermodynamic
tential U* marks the metastability limit of the isotropi
phase.

FIG. 7. Time evolution of the scalar order parametersS and P
along the helix direction. The initial shape of the front is conserv
and its speed is constant. The degree of biaxiality is very low co
pared to the degree of uniaxiality.
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~iv! U** ,U: the only stable phase becomes the orde
one.

The values of these critical thermodynamic potenti
U IC , U** , andU* are

U IC52.7F114p2S j

p0
D 2G , ~13a!

U5
8

3 F114p2S j

p0
D 2G , ~13b!

U* 53F114p2S j

p0
D 2G . ~13c!

When p0→` we recover the well-known achiral nemat
results@11#. As apparent from Eqs.~13!, the critical poten-
tials U IC , U** , andU* that are, respectively, 2.7, 8/3, and
for achiral nematics are now amplified by@1
14p2(j/p0)2#. Thus, to form a chiral nematic phase,
higher concentration of rodlike molecules is required th
for an achiral one. The thermodynamic potential depende
of the equilibrium order parameterS(U) for different values
of the ratio j/p0 is given in Figs. 9~a!–9~d!. The vertical
lines indicate the critical thermodynamic potentials det
mining the stability of the isotropic and cholesteric phas
The solid and dotted lines indicate, respectively, stable
metastable states of the given phase. The overall shape o
initial profile is conserved asj/p0 is increased;S(U** )
51/4, S(U IC)51/3, andS(U* )51/2.

We next analyze traveling-wave solutions to Eq.~11!. Us-
ing a front comoving frame, the scalar order parameter
comes

S~y,t !5S~y2vt !5S~y8!, ~14!

FIG. 8. Trajectory of the scalar order parameters through
interface in theS-P triangle. The nonlinearity of the front clearly
appears from the arced trajectory.d
-

6-9



l
table and

G. De LUCA AND A. D. REY PHYSICAL REVIEW E69, 011706 ~2004!
FIG. 9. Dependence of the equilibrium order parameterS for different values of the ratioj/p0 . The vertical lines indicate the critica
thermodynamic potential that rule stability of the isotropic and cholesteric phases. The solid and dotted lines indicate, respectively, s
metastable states of the given phase. The overall shape of the initial profile is conserved asj/p0 is increased.
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wherev is the velocity of propagation in they direction of
the traveling-wave solution. Rewriting Eq.~11! using Eq.
~14! leads to the following ordinary differential equation:

v
]S

]y8
1S j

h0
D 2 ]2S

]y82 5
] f

]S
5F12

1

3
U14p2S j

p0
D 2GS

2
1

3
US21

2

3
US3. ~15!

The right-hand side of Eq.~15! can be written as

d f

dS
5A2S1A3S21A4S3, ~16!

A25F12
1

3
U14p2S j

p0
D 2G , A352

1

3
U, A45

2

3
U,

~17!

and the roots of the polynomiald f /dS are given by
01170
S150, ~18a!

S25
1

4
2

1

4
A92

24

U
2

96

U
p2S j

p0
D 2

, ~18b!

S35
1

4
1

1

4
A92

24

U
2

96

U
p2S j

p0
D 2

. ~18c!

The solutionsS1 andS3 correspond, respectively, to the iso
tropic and cholesteric minima of the free energy potentiaf .
The solutionS2 is related to a maximum of the free energ
functional. As apparent from Eq.~18c!, the equilibrium sca-
lar order parameter of the cholesteric phase depends not
on the thermodynamic potential~like achiral nematic! but
also on the ratio between the internal length scale and
pitch. Since the solution of interest here is the interface la
or domain wall between the cholesteric and isotropic pha
moving at a velocityv, Eq. ~15! is subject to the boundary
6-10
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CHIRAL FRONT PROPAGATION IN LIQUID- . . . PHYSICAL REVIEW E 69, 011706 ~2004!
conditions S(2`)5S3 and S(1`)5S1 . Following the
steps of@19–24#, Eq.~15! is rewritten using the solutionsS1 ,
S2 , andS3 :

v
dS

dy8
1D

d2S

dy82 2A4~S2S1!~S2S2!~S2S3!5h~S!50,

~19!

with

D5
2

3 S j

h0
D 2

. ~20!

We know that the two minima off (S) areS1 ~corresponding
to the isotropic phase! andS3 ~corresponding to the choles
teric phase!. Consequently, we assume that the scalar or
parameterS satisfies the differential equation

dS

dy8
5K~S2S1!~S2S3!, ~21!

whereK is an unknown function of the equation paramete
Deriving an analogous relation for the second-order differ
tial equation in the scalar order leads to

d2S

dy82 5
d

dy8 S dS

dy8D5F d

dSS dS

dy8D G dS

dy8

5K2~S2S1!~S2S3!~2S112S2S3!. ~22!

Replacing the above relations Eqs.~21! and ~22!, into Eq.
~19! leads to the following algebraic relation:

~S2S1!~S2S3!$~2DK22A4!S2@DK2~S11S3!2A4S2

2vK#%5h~S!50. ~23!

The functionh(S) will be zero if

~2DK22A4!50, ~24a!

@DK2~S11S3!2A4S22vK#50. ~24b!

These two former relations determineK and the wave veloc-
ity v as

K5AU

3 S j

h0
D 21

, ~25!

v5AU

3 S j

h0
D F2

1

4
1

3

4
A92

24

U
2

96

U
p2S j

p0
D 2G . ~26!

The solution of Eq.~21! satisfies the full equation~15! if K
and v are given by the above relations~25! and ~26!. The
speed of the traveling wave turns out to depend on all
different parameters of Eq.~15!. The actual solutionS(y8) is
obtained by solving Eq.~21! which gives the classical fron
solution @19–24#

S~y8!5
S3

2 H 12tanhFK
S3

2
y8G J . ~27!
01170
er

.
-

e

Solution~27! has a front shape which connects the two no
degenerate minima of the free energy potential. It descri
the domain wall between the two phases, moving at the
locity v. The velocity is unique because it corresponds to
case where the potential difference between the two phas
exactly compensated by dissipation. Hence, solution~27! is a
power balanced solitary wave or diffusive soliton@23#.

Equation ~27! yields a positive velocity as long asU
.U IC which indeed confirms that the stable choleste

FIG. 10. Behavior of the traveling ordering interface.~a! When
U.U IC , the speed of the front is positive as the stable cholest
phase is advancing into the isotropic metastable/unstable ph
However, whenU,U IC , speed is negative and the isotropic fro
is advancing. At the exact thermodynamic potentialU5U IC the
interface becomes static. The speed increases with the ratioj/h0 .
~b! When the ratioj/p0 increases, the speed decreases~for any
given thermodynamic potential!.
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G. De LUCA AND A. D. REY PHYSICAL REVIEW E69, 011706 ~2004!
FIG. 11. Response of the scalar order parameter profile fo
increase of~a! j/p0 , ~b! j/h0 , and ~c! U. The amplitude of the
front is affected by the pitch (po) and by the thermodynamic po
tential (U), while the shape of the front is affected by both therm
dynamic potential and coherence~j! length.
01170
phase is advancing into the isotropic metastable/unst
phase. Similarly, ifU,U IC , the velocity is negative and th
isotropic is advancing. At the exact thermodynamic poten
U5U IC the interface becomes static. In addition, when
ratio between the internal and external length scales,j/h0 ,
increases, the speed of the front increases too. Howe
when the ratio between the internal length scale and
pitch, j/p0 , increases, the speed decreases~for any given
thermodynamic potential!. So the speed profiles shift in
similar way to the scalar order parameter profiles. Sinc
has been established previously from the phase-plane an
sis of the original governing equation that an increase in
ratio j/p0 leads to an increase in the biaxial ordering, it
concluded here that an increase in biaxiality of the orde
phase reduces its speed of progression. Figures 10~a! and
10~b! summarize the behavior of the traveling ordering int
face.

Additionally, it is found that the shape of the scalar ord
parameter profile at the interface is flattened by an incre
of thej/p0 ratio; this result is consistent with the observati
that as biaxiality increases, uniaxiality decreases. The th
ness of the interface reduces with thej/h0 ratio, which is
again consistent with physically observed behavior. Look
now at the effect of the thermodynamic potential (U), the
two previous phenomena are observed to occur at the s
time. That is, as the thermodynamic potential (U) increases,
the interface thickness shrinks and the equilibrium order
rameter of the stable cholesteric phase increases.

Figures 11~a!–11~c! show the behavior of the scalar ord
parameter profile across the interface. The figures show
the amplitude of the front is affected by the pitch (p0) and by
the thermodynamic potential (U), while the shape of the
front is affected by both the thermodynamic potential a
coherence~j! length. To assess the usefulness of the unia
solution~28! we next determine its accuracy. Figure 12 co
pares the shape of the computed front@numerical solutions to
Eqs.~6!# with the analytical solution~27!. The figure shows
that even in the presence of an induction time for the co
putational solution, the front position at a representative ti
of t517.5 is almost identical. The front shape for both ca
is also very close. Thus, we conclude that for sufficien
large pitches, the analytical results obtained under
uniaxial approximation compare well with the numerical r
sults of the governing equation and therefore are usefu
describe the parametric sensitivity of chiral front propagat
in cholesteric phases such as those found in the matrix
developing biological fibrous composite.

V. CONCLUSIONS

A model based on the Landau–de Gennes theory has
used to simulate a lyotropic cholesteric liquid-crystalline m
terial in order to understand the structure formation proc
of the twisted plywood architecture ubiquitously found
biological fibrous composites. The model is able to rep
duce the experimentally observed planar monodomain
tures. The numerical simulations confirm that, as sugge
by Neville @1#, a constraining layer is necessary for the stru
ture to have a unique helical axis and be monodomain.
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CHIRAL FRONT PROPAGATION IN LIQUID- . . . PHYSICAL REVIEW E 69, 011706 ~2004!
absence of such a preordered layer leads otherwise to
tiple helical axes and therefore to polydomain textures w
topological defects that weaken the mechanical integrity
the structure.

A phase-plane analysis of the reduced governing equa

FIG. 12. Comparison of the front from numerical solutions a
uniaxial approximation at the representative timet517.5. The
shape and position of the front are also very close which asse
the relevance of the uniaxial solution.
01170
ul-
h
f
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reveals that biaxiality increases with the ratio between
internal length scale and the cholesteric pitch,j/p0 ~its
chirality!. Since biological fibrous composites are long-pit
systems, their structure is essentially uniaxial.

Finally, an analysis made under the assumption o
uniaxial cholesteric mesophase showed how the different
rameters of the model affect the speed of the ordering p
cess. As expected, the speed of the ordering process
found to increase with the thermodynamic potential and
ratio j/h0 . However, the process is slowed by an increase
chirality. This deceleration of the ordering process is in tu
linked to the increase of the biaxiality generated by the
creased chirality of the material as shown in theS-P tri-
angle. This means that the symmetry of the phase and
asymmetric fibrous constituents greatly influences the t
required for the biological composite to assemble itself.
nally, the thickness of the dynamic domain wall shrinks w
an increase in the thermodynamic potential and a decreas
the ratioj/h0 .

We hope that these results will contribute to a better
derstanding of the mechanisms which control the format
of the planar monodomain twisted plywood architectu
found in cholesteric liquid crystals and their biological
brous composite analogs.
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